sina+sinb=√2/2cosa+cosb=x两边平方,相加因为sin²+cos²=1所以2+2(cosacosb+sinasinb)=1/2+x²2+2cos(a-b)=1/2+x²cos(a-b)=(x²-3/2)/2-1<=cos(a-b)<=1-1<=(x²-3/2)/2<=11/2<=x²<=7/2所以-√14/2<=cosa+cosb<=-√2/2,√2/2<=cosa+cosb<=√14/2